
Modelling 1
SUMMER TERM 2020

LECTURE 19

Regular and Irregular Sampling

Informatik

Institut

für

Michael Wand · Institut für Informatik · Michael.Wand@uni-mainz.de

Sampling & Reconstruction

Reference: Foley, van Dam, Feiner, Hughes
Computer Graphics - Principles & Practice, 2nd Edition, Addisson-Wesley, 1996
Chapter 14.10 “Aliasing and Antialiasing”

Regular Sampling

Reconstruction Filters

▪ Optimal filter: sinc
(no frequencies discarded)

▪ However:

▪ Ringing artifacts in spatial domain

▪ Not useful for images
(better for audio)

▪ Compromise

▪ Gaussian filter
(most frequently used)

▪ There exist better ones,
such as Mitchell-Netravalli,
Lancos, etc...

Ringing by sinc reconstruction
from [Mitchell & Netravali,
Siggraph 1988]

2D sinc 2D Gaussian

Irregular Sampling

Irregular Sampling

Irregular Sampling

▪ No comparable formal theory

▪ However: similar idea

▪ Band-limited by “sampling frequency”

▪ Sampling frequency = mean sample spacing

– Not as clearly defined as in regular grids

– May vary locally (adaptive sampling)

▪ Aliasing

▪ Random sampling creates noise as aliasing artifacts

▪ Evenly distributed sample concentrate noise in higher
frequency bands in comparison to purely random sampling

Consequences

When designing bases for function spaces

▪ Use band-limited functions

▪ Typical scenario:

▪ Regular grid with spacing 𝜎

▪ Grid points 𝐠𝑖

▪ Use functions: exp −
𝐱−𝐠𝑖

2

𝜎2

▪ Irregular sampling:

▪ Same idea

▪ Use estimated sample spacing instead of grid width

▪ Set 𝜎 to average sample spacing to neighbors

Random Sampling

Random sampling

▪ Aliasing gets replaced by noise

▪ Can we optimize this? – Yes!

Different types of noise

▪ “White noise”: All frequencies equally likely

▪ “Blue noise”: Pronounced high-frequency content

Depends on sampling

▪ Random sampling is “white”

▪ Poisson-disc sampling (uniform spacing) is “blue”

Random Noise

pixel image (b/w) discrete Fourier transform
(power-spectrum)

Poisson Disc Sampling

pixel image (b/w) discrete Fourier transform
(power-spectrum)

Regular Sampling

pixel image (b/w) discrete Fourier transform
(power-spectrum)

Jittered Grid (Uniform Displacem.)

pixel image (b/w) discrete Fourier transform
(power-spectrum)

Jittered Grid (same density)

pixel image (b/w) discrete Fourier transform
(power-spectrum)

Examples

pixel image (b/w) discrete Fourier transform
(power-spectrum)

Why should we care?

Example: Stochastic Raytracing

▪ Shoot random rays → random noise

▪ Low-pass filter → less noise

▪ Low-frequency noise persists

▪ LF-noise is particularly ugly!

▪ Need many samples

Recipe:

Sampling Signals

How to Sample

Given

▪ Function 𝑓:ℝ → ℝ

Uniform sampling

▪ Sample spacing 𝛿 (given)

Choose filter kernel

▪ In case of doubt, try:

𝜔 x = exp −𝛿−1𝑥2

▪ Sample 𝑓 ⊗𝜔 x regularly

▪ For example: Monte-Carlo integration

How to Sample

Given

▪ Function 𝑓:ℝ𝑛 → ℝ𝑚

Multi-dimensional Gaussian

▪ In case of doubt, try:

𝜔 x =ෑ

𝑑=1

n

exp −
1

𝛿
𝑥𝑑
2

▪ Same procedure otherwise…

How to Sample

Multi-dimensional Gaussian

𝜔 x =ෑ

𝑑=1

n

exp −
1

𝛿
𝑥𝑑
2

How to Sample

Non-Uniform Sampling

▪ Choose sample spacing 𝛿 x

▪ Match level of detail

▪ Nyquest limit

▪ Spacing between two “ups” = frequency

▪ Filter adaptively

▪ Varying filter width

▪ Sample adaptively

▪ Sampling width varies accordingly

Recipe:

Reconstructing Signals

Signal Rec

Uniform

▪ Given samples 𝑦𝑖 = 𝑓 𝑥𝑖 , 𝑖 = 1, … , 𝑛, spacing 𝛿

▪ Chose reconstruction filter

▪ Try: 𝜔 x = exp −𝛿−1𝑥2

Reconstruction: ሚ𝑓 = σ𝑖=1
𝑛 𝑦𝑖 ⋅ 𝜔 x − 𝑥𝑖

Non-Uniform

Non-Uniform

▪ Samples 𝑦𝑖 = 𝑓 𝑥𝑖 , 𝑖 = 1,… , 𝑛,

▪ Varying spacing 𝛿𝑖
▪ If unknown: average spacing of k-nearest neighbors

▪ Chose reconstruction filter

▪ Try: 𝜔𝑖 x = exp −𝛿𝑖
−1 𝑥 − 𝑥𝑖

2

Reconstruction:

“Partition of Unity”
just to be save…

ሚ𝑓 =
σ𝑖=1
𝑛 𝑦𝑖 ⋅ 𝜔𝑖 x − 𝑥𝑖
σ𝑖=1
𝑛 𝜔𝑖 x − 𝑥𝑖

Reconstruction: Implementation

Variant 1: Gathering

▪ Record samples in list (plus kD Tree, Octree, grid)

▪ For each pixel:

▪ Range query: kernel support radius

▪ Compute weighted sum (last slide)

Variant 2: Splatting

▪ Two pixel buffers: Color (3D), weight (1D)

▪ Iterate over samples:

▪ Add Gaussian splat to weight buffer

▪ Add 3× Gaussian splat scaled by RGB to color buffer

▪ In the end: Divide color buffer by weight buffer.

Gathering

filter 𝜔

1 pixel

rays 𝑥𝑖, 𝑓(𝑥𝑖)

ሚ𝑓 =
σ𝑖=1
𝑛 𝑦𝑖 ⋅ 𝜔 x − 𝑥𝑖
σ𝑖=1
𝑛 𝜔 x − 𝑥𝑖

Splatting

color buffer weight buffer

ሚ𝑓 =
σ𝑖=1
𝑛 𝑦𝑖 ⋅ 𝜔 x − 𝑥𝑖
σ𝑖=1
𝑛 𝜔 x − 𝑥𝑖

Remark: Anisotropic Filtering

ሚ𝑓 =
σ𝑖=1
𝑛 𝑦𝑖 ⋅ 𝜔 x − 𝑥𝑖
σ𝑖=1
𝑛 𝜔 x − 𝑥𝑖

Building Anisotropic Filters

How to construct?

▪ Given: Kernel 𝑤(𝐱)

▪ For example: 𝑤 𝐱 = exp −
1

2𝜎
𝐱T𝐱

▪ Coordinate transformation:

▪ 𝑤 𝐱 → 𝑤 𝐓𝐱

▪ Gaussian: 𝑤 𝐱 = exp −
1

2𝜎
𝐱T 𝐓T ⋅ 𝐓 𝐱

main axis

𝐱T𝐱

𝐱T 𝐓T ⋅ 𝐓 𝐱

Advanced

Reconstruction

Push-Pull Algorithm

Problem with partition-of unity:

Artifacts at boundaries of sampling

Source: [Glassner 1995, Principles of digital image synthesis, CC license]

Remedy

Push-Pull-Algorithm

▪ Reconstruct at multiple levels (stratification)

▪ Build quadtree

▪ Keep one sample per cell

▪ Creates different levels

▪ Add results together

▪ Do not reconstruct in empty cells

Reduced bias

Advanced Reconstruction

Moving Least-Squares

Moving Least Squares

Moving least squares (MLS):

▪ MLS is a standard technique for scattered data
interpolation.

▪ Generalization of partition-of-unity method

Weighted Least-Squares

Least Squares Approximation:

target values basis functions

B1 B2 B3

least squares fit

pi = (xi, yi)

(x)

weighting functions

Least-Squares

Least Squares Approximation:

)()(
~

1

xBxy
i

n

i

i
=

= 

()
=

−

n

i

iii

i

xyxy

c 1

2

)()(
~

argmin 

Best Fit (weighted):

Least-Squares

Notation:

 nBB ,...,: 1=b

















−−

−−

=

)(

)(

:
1

nx

x

b

b

B 

















=

ny

y


1

:y

)(

)(

:
1

nx

x























=W

() ()yWBλBWB 22 TT =Normal Equations:

() yWBBWBλ 212 TT −
=Solution:

() yWBBWBbλb 2T12TT)(),()(~ −
== xxxyEvaluation:

MLS approximation

Moving Least-Squares

Moving Least Squares Approximation:

target values

move basis and weighting function,
recompute approximation y(x)~

Moving Least-Squares

Moving Least Squares Approximation:

target values

approximation

Summary: MLS

Standard MLS approximation:

▪ Choose set of basis functions
▪ Typically monomials of degree 0,1,2

▪ Choose weighting function
▪ Typical choices: Gaussian, Wendland function, B-Splines

▪ Solution will have the same continuity as the weighting function.

▪ Solve a weighted least squares problem at each point:

▪ Need to invert the “moment matrix” at each evaluation.

▪ Use SVD if sampling requirements are not guaranteed.

moment matrix

() yWBBWBb 2T12TT)()()()()()()(~ xxxxxxxy
−

=

Remark

Uncertainty Relation(s)

Fourier Transform Pairs

Gaussians

𝑓 𝑥 = 𝑒−𝑎𝑥
2

→ 𝐹 𝜔 =
𝜋

𝑎
⋅ 𝑒−

𝜋𝜔 2

𝑎

𝑥 𝜔

Taylor-Approximation

𝑓(𝑥)

Function f

𝑓(𝑥)

Think of this:

neighborhood differences

𝑥

tangent slope

𝑓′(𝑥)

𝑥

𝑓:ℝ → ℝ

𝑓′ 𝑥 = lim
ℎ→0

𝑓 𝑥 + ℎ − 𝑓 𝑥

ℎ

𝑓 = (𝑦1, … , 𝑦𝑛)

𝑓′ 𝑥𝑖 ≈
𝑦𝑖 − 𝑦𝑖−1

ℎ

𝑓′(𝑥𝑖)
𝑦𝑖

𝑦𝑖−1

ต
ℎ

