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Sampling & Reconstruction
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(a) a continuous function and (c) sampling: frequencies beyond the Nyquest limit
its frequency spectrum V/2 appear as aliasing
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(b) a regular sampling pattern (d) reconstruction: filtering with a low-pass filter R
(impulse train) and its frequency spectrum to remove replicated spectra

Reference: Foley, van Dam, Feiner, Hughes
Computer Graphics - Principles & Practice, 2nd Edition, Addisson-Wesley, 1996
Chapter 14.10 "Aliasing and Antialiasing”



Regular Sampling

Reconstruction Filters

= Optimal filter: sinc R
(no frequencies discarded) Q
= However:
= Ringing artifacts in spatial domain
, Ringing by sinc reconstruction
- Not useful for images from [Mitchell & Netravali,
(better for audio) Siggraph 1988]

= Compromise

= Gaussian filter
(most frequently used)

= There exist better ones,
such as Mitchell-Netravalli,
Lancos, etc... 2D sinc 2D Gaussian




Irregular Sampling



Irregular Sampling

Irregular Sampling
= No comparable formal theory

= However: similar idea
= Band-limited by “sampling frequency”
= Sampling frequency = mean sample spacing
— Not as clearly defined as in regular grids
—- May vary locally (adaptive sampling)

= Aliasing
= Random sampling creates noise as aliasing artifacts

= Evenly distributed sample concentrate noise in higher
frequency bands in comparison to purely random sampling



Conseguences

When designing bases for function spaces
= Use band-limited functions

= Typical scenario:
= Reqgular grid with spacing o
= Grid points g;

—g.)2
= Use functions: exp (— (Xagz‘) )
= |rregular sampling:

= Same idea
« Use estimated sample spacing instead of grid width

= Set 0 10 average sample spacing to neighbors



Random Sampling

Random sampling
= Aliasing gets replaced by noise
= Can we optimize this? — Yes!

Different types of noise
= "White noise”. All frequencies equally likely
= “Blue noise”: Pronounced high-frequency content

Depends on sampling
= Random sampling is “white”
= Poisson-disc sampling (uniform spacing) is “blue’



Random Noise

pixel image (b/w) discrete Fourier transform
(power-spectrum)



Poisson Disc Sampling

pixel image (b/w) discrete Fourier transform
(power-spectrum)




Regular Sampling

pixel image (b/w) discrete Fourier transform
(power-spectrum)




Jittered Grid (Uniform Displacem.)

pixel image (b/w) discrete Fourier transform
(power-spectrum)




Jittered Grid (same density)

pixel image (b/w) discrete Fourier transform
(power-spectrum)



Examples

pixel image (b/w) discrete Fourier transform
(power-spectrum)




Why should we care?

Example: Stochastic Raytracing
= Shoot random rays — random noise

= Low-pass filter - less noise
= Low-frequency noise persists
= LF-noise is particularly ugly!
= Need many samples



Recipe:

Sampling Signals



How to Sample

Given
= Function f:R - R

Uniform sampling
= Sample spacing 6 (given)

Choose filter kernel
= |n case of doubt, try:

w(x) = exp(—5~1x?)

I

A NN

= Sample (f @ w(x)) regularly

= For example: Monte-Carlo integration



How to Sample

Given
= Function f: R" - R™

Multi-dimensional Gaussian
= |[n case of doubt, try:

n

w(x) = 1_[ exp (— %xﬁ)

ad=1

= Same procedure otherwise...



How to Sample

_________________________________________________

————————————————————————————————————————————————

Multi-dimensional Gaussian

n

w(x) = 1_[ exp (— %xé)

d=1



How to Sample

Non-Uniform Sampling
= Choose sample spacing 6 (x)

= Match level of detail
= Nyqguest limit
= Spacing between two “ups” = frequency

= Filter adaptively
= Varying filter width

= Sample adaptively
= Sampling width varies accordingly



Recipe:
Reconstructing Signals



Signal Rec

(S(f} u(t) @ FT(R)

(FT(s)(f) @lFT(u}(f)) *R(f)
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Uniform

= Given samples y; = f(x;),i =1, ...,

= Chose reconstruction filter
= Try: w(x) = exp(—6~1x?)

n, spacing é

Reconstruction: f = Y™ . y; - w(x — x;)




Non-Uniform

Non-Uniform
= Samplesy;, = f(x;),i =1, ...,n,

= Varying spacing 6;
= |f unknown: average spacing of k-nearest neighbors

= Chose reconstruction filter
= Try: w;(x) = exp(—c?i_l(x — xl-)z)

Reconstruction:

~ =1y wi(x—x;)
f — “Partition of Unity”

Z?=1 wi(X o x1)<—l just to be save...




Reconstruction: Implementation

Variant 1: Gathering
= Record samples in list (plus kD Tree, Octree, grid)

= For each pixel.
= Range query: kernel support radius
= Compute weighted sum (last slide)

Variant 2: Splatting
= Two pixel buffers: Color (3D), weight (1D)

= |terate over samples:
= Add Gaussian splat to weight buffer
= Add 3x Gaussian splat scaled by RGB to color buffer

= [n the end: Divide color buffer by weight buffer.



Gathering
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Splatting

color buffer weight buffer

Yic1 Vi - w(x—x;)
Z?:l (U(X o xi)

7=



Remark: Anisotropic Filtering




Building Anisotropic Filters

main axis

X X

x'[TT . T]x
How to construct?
= Given: Kernel w(x)
= For example: w(x) = exp (—%xTx)
= Coordinate transformation:
= w(x) » w(Tx)

= Gaussian: w(x) = exp (—%XT[TT : T]x)



Advanced
Reconstruction




Push-Pull Algorithm

(a)

(b) ‘

FIGURE 10.103

Reconstruction with the Mitchell multistage filter.
Reprinted, by permission, from Mitchell in Computer
Grapbhics (Proc. Siggraph ’87), fig. 14, p. 72.

Source: [Glassner 1995, Principles of digital image synthesis, CC license]

(a) The test situation: a straight edge between black and white regions. (b) A failure of

weighted-average reconstruction. Reprinted, by permission, from Mitchell in Computer
Graphics (Proc. Siggraph ’87), fig. 11, p. 72.



Remedy

Push-Pull-Algorithm

= Reconstruct at multiple levels (stratification)
= Build quadtree
= Keep one sample per cell
= Creates different levels

= Add results together
= Do not reconstruct in empty cells

Reduced bias



Advanced Reconstruction
Moving Least-Squares



Moving Least Squares

Moving least squares (MLS):

= MLS is a standard techniqgue for scattered data
interpolation.

= Generalization of partition-of-unity method



Weighted Least-Squares

Least Squares Approximation:
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weighting functions least squares fit



L east-Squares

Least Squares Approximation:

y(x) =Y 2,B,(x)

Best Fit (weighted)°

argmln Z H y (X)) -y, a)(x)H



Least-Squares
Nhotadl duations: (BTWZB)}\ = (BTW2 )y
Solution: A = (BTWZB)_1 B'W-y
Evaluation: J7(x) =<b(x), A>=b(x)"(B"W’B] ' B"W?y

MLS approximation

b:=|B,,..B,]
— b(x,) - _.V1 ] _a)(x1) ]
B:= : y:=| : W=
—b(x,)—] Y - ao(x,)




Moving Least-Squares

Moving Least Squares Approximation:

target values
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move basis and weighting function,
recompute approximation y(x)



Moving Least-Squares

Moving Least Squares Approximation:
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Summary: MLS

Standard MLS approximation:

= Choose set of basis functions
= Typically monomials of degree 0,1,2

Choose weighting function
= Typical choices: Gaussian, Wendland function, B-Splines
= Solution will have the same continuity as the weighting function.

Solve a weighted least squares problem at each point:

F(x)=b(x)" (B(x)" W(x)’B(x)] ' B(x)" W(x)’y

moment matrix

Need to invert the “moment matrix” at each evaluation.

Use SVD it sampling requirements are not guaranteed.



Remark
Uncertainty Relation(s)




Fourier Transform Pairs

Gaussians
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Taylor-Approximation

Function f Think of this:
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